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ABSTRACTControl theory, omputational intelligeneand stohasti optimization methods are puttogether to build a new searh algorithmfor use in optimization problems involvingomputationally expensive evaluation tools,suh as the design of optimal aerodynamishapes. The searh for optimal solutions isarried out through Evolutionary Algorithms(EAs). Instead of using the exat and ostlyevaluation tool, EAs rely on a low{ost,regularly (re)trained new surrogate evaluationmodel. Compared to some previous worksby the same group, where on{line trainedsurrogate models were used, the new methodhas two notieable di�erenes. The �rst oneis that the surrogate model is built o�{line,i.e. separately from the optimization method;thus, a repetitive sheme is established whihonverges to the optimal solution within asmall number of external yles. The seondand most important di�erene is that thesurrogate model is trained on both objetivefuntion values and its derivatives with respetto the design variables. For this purpose, anew Radial Basis Funtion (RBF ) neuralnetwork is proposed, with extra terms andadjustable oeÆients. Single{ and multi{objetive mathematial problems as well asthe inverse design of a peripheral ompressorasade will be presented. For the latter,the objetive funtion gradient is omputedthrough solving the adjoint ow equations.

EVOLUTIONARY ALGORITHMSWITH SURROGATE MODELSThe omputational ost of shape optimizationmethods in aeronautis or turbomahineryis proportional to the number of andidatesolutions that should be evaluated by CFDsoftware, before reahing the optimal solu-tion. In population{based EAs, this numberis usually high enough. To alleviate thisproblem, surrogate evaluation models an beused instead; in the past, several relevantalgorithmi variants have been proposed byour researh group, see [1�9℄ .In those works, various surrogate evalua-tion models (multilayer pereptron, RBF net-works, kriging model) have been inorporatedinto EAs, either in the global (in the earlierworks) or in the loal sense (in the most reentworks).A surrogate evaluation model will be re-ferred to as \global" if this overs the entiresearh spae. During the evolution, the globalmodel needs to be updated regularly, usingdata from preeding evaluations. Its trainingis arried out o�{line, whenever \enough" newdata have been reorded. On the other hand,a \loal" surrogate evaluation model needs tobe trained for eah and every individual anew,using the available neighboring data. This willbe referred to as \on{line" training.In general, global and loal surrogate mod-els an be used in the same manner: within



Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004eah generation of the EA, the surrogate mod-els pre{evaluate the entire population (inexatpre{evaluation phase, IPE see [6℄, [9℄). Then,only the top individuals needs to be evaluatedusing the ostly CFD tool, before proeedingto the seletion proess in order to de�ne theparent population for the next generation. Wethus prevent a great number of non{promisingpopulation members from being exatly evalu-ated.Even with the IPE tehnique, where theomputational ost is redued by almost oneorder of magnitude, gradient{based optimiza-tion algorithms usually make this faster thanEAs ! Among other, ontrol theory is often em-ployed to derive the adjoint to the ow equa-tions whose solution yields the objetive fun-tion gradient values, [10℄. This an be usedalong with any gradient desent{like algorithmto get the optimal solution. However, by do-ing so, loal instead of global optimal solutionsould be found.Despite the suessful use of loal surrogatemodels in evolutionary optimization, as shownin [7℄, [9℄, et., we herein propose and assessa di�erent optimization algorithm. All of thepreviously mentioned tools are used, thoughin a di�erent way: EAs undertake the searhfor the optimal solution; an enhaned surro-gate model is regularly rebuilt (o�{line train-ing) and used; the adjoint equations are usedto support the surrogate model rather thanthe optimization method itself. The proposedmethod is desribed below, in detail.THE PROPOSED OPTIMIZATIONMETHODAs stated before, the new method is based onEAs, surrogate models and adjoint tehniquesbut with a number of notieable di�erenesompared to our previous works. These are:� The surrogate model is a new RBF net-work, �rst proposed in this paper. Sinethe network will be trained on both re-sponses and their gradients with respetto the network input parameters, it shouldinorporate additional tuning parameters.The use of gradient information duringtraining inreases the preditive apabil-ities of the network or, alternatively, the

same auray an be ahieved using muhsmaller training datasets. The additionalost for training the network is almost neg-ligible for small-sized networks. The newRBF network will be desribed in the nextsetion.� The EA is used to ompute the \optimal"solution, using evaluations based on thesurrogate model (this explains the use ofquotes). Aording to the previous dis-ussion, the surrogate model should be re-ferred to as global. Upon onvergene ofthe EA, the urrent \optimal" solution isexatly evaluated. The proess is termi-nated or a new yle starts, dependingon the deviation between its exat �tnessvalue and that omputed via the surrogatemodel.� Computation of objetive funtion deriva-tives is made possible through the ou-pling of the ow equations solver with thenumerial solution of the adjoint systemof equations. The latter is disussed ina separate setion. The CPU ost of theadjoint equations solver does not exeedthe ost of the numerial solution of theow equations and does not depend onthe number of design variables. So, pra-tially, the CPU ost for the analysis ofa andidate solution (solution of the owand adjoint equations) is about twie theost of omputing only its response (solu-tion of the ow equations).� In multi{objetive problems, as manyRBF networks as the number of objetivesshould be trained. The multi{objetive al-gorithm di�ers from the single{objetiveone in the manner new training datasetsare de�ned.The single{objetive optimization algo-rithm is desribed below:Step 1: The starting training dataset for thesurrogate model is reated. The train-ing patterns an be de�ned using any De-sign of Experiment (DoE ) tehnique, toattain maximum information for the re-sponse surfae through the minimum num-ber of patterns. Regular grids, random



Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004sampling, (full or frational) fatorial de-signs, orthogonal arrays et. an be used.In this paper, the training patterns are ei-ther hosen at random or de�ned as thenodal points of a grid �tted to the searhspae.Step 2: For the previously seleted individu-als, the ow solver and the adjoint equa-tions are solved. The so{omputed re-sponses and derivatives are stored in thetraining database.Step 3: The surrogate model (RBF network)is trained.Step 4: The EA software is used to get the\optimal" solution, using only the surro-gate evaluation model.Step 5: The \optimal" solution is re{evaluated separately, using the exatevaluation tool. If the deviation betweenthe approximate and exat �tness isless than a user de�ned threshold, thealgorithm terminates here.Step 6: The training set is rede�ned byadding new entries or eliminating some ofthe existing ones. The most reent \op-timal" solution whih has been evaluatedexatly in step 5 is added to the trainingset; at the same time, the losest to the\optimal" solution training pattern shouldbe eliminated if their distane (nondimen-sional, measured in the parametri spae)is less than a user{de�ned value. Overand above, � new training patterns (� is auser{de�ned small integer) are evaluatedand then added to the dataset. These areseleted by running � minor optimizationproblems, seeking for points with maxi-mum average distane from the existingtraining patterns. This searh is also ar-ried out by EAs and its omputing ostis negligible. Finally, windowing, i.e. theredution of the searh spae is possible(though optional) and, by doing so, someother entries are eliminated from the newtraining set. Return to step 2.With some modi�ations, the same algorithmapplies to multi{objetive problems as well. Inthis ase, instead of adapting the searh spae

(Step 6) around a single \optimal" solution, amore ompliated algorithm is used to arryout the adaptation around the Pareto frontmembers. A thinning proess is used to reduethe number of entries in the Pareto front andontrol the number of additional entries intothe training dataset.THE NEW RBF NETWORKFor the new RBF network desription, wewill assume M inputs (orresponding to theM design variables) and a single output. Atypial RBF network is shown in �g. 1; itinvolves N hidden units and, for its training,N patterns are used. The response is given byy = NXi=1  i exp(��i) (1)
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1 2 Mm43Figure 1: An RBF network with a single out-put unit.Unlike onventional RBF networks, theweights  i are not the unknown parameters tobe omputed during the training. Instead, theyare expressed as linear ombination of the realunknown quantities bi and ai;m, namely i = bi + MXm=1 ai;m[1 + (xm � i;m)℄ (2)where xm and i;m denote the m-th omponentof a training pattern and the i-th RBF enter,respetively. The RBF enters oinide withthe training patterns. The �i quantitites aregiven by�i =M MXm=1 Ii;m(xm � i;m)2 (3)



Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004As previously stated, the bi and ai;m oef-�ients are omputed during the trainingproess. A linear system is formulated bysetting responses and derivatives omputedby the network equal to the orrespondingarhived values for eah training pattern, sep-arately. The resulting system is solved using adiret inversion method. The iterative Bak{Error{Propagation (BEP) method an beused instead; BEP is heaper to run with hugetraining datasets and/or high{dimensionalmultivariate problems.THE ADJOINT FORMULATIONOF THE FLOW EQUATIONSThe CFD evaluation sofware used to evaluateandidate solutions is a primitive variable,impliit solver of the ompressible, invisiduid ow equations, written as a hyperbolisystem of equations�!R (�!U ) = ��!U�t + ��!F�x + ��!G�y + ��!E�z = �!0 (4)where �!U is the array of the onservative owvariables. The onvetion terms are disretizedusing seond{order upwind shemes. The tar-get is to reprodue a given pressure distribu-tion pt over the blade surfae. The objetivefuntion is de�ned asI = 12 ZZSw(p� pt)2dS (5)and, through adding the Euler equations mul-tiplied by the ostate variables �!	, we ome upwith the augmented objetive funtion, [10℄I = 12 ZZSw(p�pt)2dSw+ZZZV �!	T�!RdV (6)or, symbolially,I = I(�!U ;�!	 ;�!X ) (7)where V is the ow domain and �!X stands forthe design variables' array. The ontinuous ad-joint formulation is set up to ompute deriva-tives dId�!X = �I��!U ��!U��!X + �I��!X (8)and leads to the linear adjoint equation

��!	�t �AT ��!	�x �BT ��!	�y � CT ��!	�z = �!0 (9)whih is solved through the same numeri-al kernel with the Euler equations. HereA = ��!F��!U , et.RESULTS AND DISCUSSIONTo demonstrate the general apabilities ofthe method, single{ and multi{objetivemathematial optimization problems are �rstsolved. In partiular, problems with onlytwo free parameters ontribute a lot to theunderstanding on the method, through simpleresponse surfae plots. Of ourse, in theseproblems, the objetive funtion gradient isomputed analytially. As already statedabove, the engineering problem with whihthis paper is dealing with is the inverse designof a 3D ompressor peripheral asade.The Single{Objetive Rastrigin FuntionThe �rst mathematial problem is the min-imization of the Rastrigin funtion. Regard-less of the number of free parameters (M), theRastrigin funtion has many loal stationarypoints and is a typial test problem for assess-ing the apabilities of optimization methods.It is de�ned byFR (�!x ) = MXi=1 �x2i � 10os(2� xi) + 10� (10)First of all, the solution of the problem withM = 2 is demonstrated. Both independentvariables xi; i = 1; 2 were bounded in [�1; 1:5℄.The searh spae was purposely de�ned to beasymmetri with respet to the global mini-mum (0; 0). At the �rst yle, the surrogatemodel was trained usingN = 30 randomly ho-sen patterns. None of them was allowed to liewithin a small irle (radius=0:30) entered at(0; 0), i.e. too lose to the �nal solution, �g.2.Two yles were suÆient for the optimiza-tion proess to onverge to the global optimum.This was due to the exellent representation ofthe exat response surfae that the new RBFnetwork ahieved from the �rst yle, even withonly 30 training patterns. It is evident thatthe seond yle ontributes pratially to the



Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004re�nement of the urrent solution. In order todemonstrate the predition auray of the sur-rogate model (built in the �rst yle), a densegrid was generated and the model responsesover its nodal points were omputed. The or-responding iso{areas are shown in �g.3. This�gure also inludes the exat responses as wellas responses omputed using a onventionalRBF network (trained on responses, withoutaounting for gradients). The superiority ofthe new model is obvious. Moreover, it is in-teresting to note that some subareas in �g.2(among them, the area lose to the optimal so-lution) are point{free (no points within theseareas were inluded in the database). This iswhere the onventional RBF network system-atially fails; in ontrast, the new surrogatemodel, driven also by gradient data, yields ex-ellent preditions.
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Figure 3: Rastrigin Funtion, M = 2: Re-sponse surfaes (a) predited by the new RBFnetwork (top{left), (b) predited by a onven-tional RBF network, i.e. without taking intoaount gradient information (top{right) and() the exat one (analytially omputed, bot-tom).re�ned during the last two yles.Apart from the initial 100 patterns, 25 morewere exatly evaluated during the subsequentyles. Thus, 125 objetive funtion and gra-dient evaluations were neessary whih, foran equivalent ow problem (where the adjointequations should be solved to ompute the gra-dient) means that the total omputing ostwould be equal to 250 equivalent ow solutions.Two{Objetive Minimization Problem
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Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004The seond problem involves two mathe-matial funtions with M = 2 degrees of free-dom eah. Both should be minimized, leadingthus to the Pareto front of optimal solutions.The two funtions areFk(x)= PNi=1�(xi � ak)2�10 os(2�(xi�ak))+10�2 !0:25(11)where k = 1; 2, a1 = 0, a2 = 1:5,x1 2 [�2:12; 1:12℄ and x2 2 [�1:12; 2:12℄.The starting training set was formed byN = 100 randomly seleted patterns, the samefor eah objetive funtion. By the end ofeah yle, the Pareto optimal solutions wereexatly evaluated and added to the trainingdataset. In order to avoid extra (unneessary)omputing harge that might our wheneverthe Pareto front is overrowded, a thinningtehnique was employed. The role of front thin-ning is to identify a subset of the Pareto mem-bers (its size is user{de�ned), based on distaneonsiderations. In the literature, several thin-ning tehniques for the Pareto front are pro-posed, but more omments on them is beyondthe sope of this paper.At the end of the optimization proess thetraining dataset onsisted of 133 patterns. ThePareto front �nally omputed using the surro-gate model is ompared to the exat front, asshown in �g.5. The response surfaes preditedby the proposed surrogate model, the onven-tional RBF network and the exat responsesurfae, over the nodal points of a dense grid,are shown in �g. 6. The new RBF networks ismuh better than the onventional one, espe-ially as far as the �rst funtion is of onern.Inverse Design of a 3D Peripheral Cas-adeThe last problem is onerned with the in-verse design of a peripheral ompressor as-ade, based on given pressure distributionsalong its surfaes. The analysis tool was a�nite{volume solution method for the 3D om-pressible, invisid ow equations. A similartehnique was used to numerially solve theadjoint equations, yielding thus the sensitivityderivatives required for the network training.The isentropi Mah number at outlet hub wasequal toM2;is = 0:4 and the peripheral and ra-dial inlet ow angles were aper = 58o; aradial =
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Figure 6: Two Objetive Funtion: Responsesurfaes for the �rst (left olumn) and seond(right olumn) objetive funtions. The exatshapes (top), the ones omputed using the newRBF network (mid) and thoses produed us-ing a onventional RBF network (bottom) areshown.
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Figure 7: 3D Peripheral Casade: Parameter-ization of the pressure and sution blade sur-faes using Bezier surfaes. A total number of5� 4 = 20 ontrol points were de�ned on eahsurfae.0o. The blade pressure and sution sides wereparameterized using two Bezier surfaes, whihmet along the leading and training edges. Eahside of the blade (pressure and sution), wasparameterized using 20 ontrol points, 4 ofthem to the radial diretion, times 5 to theaxial one. �g. 7. Among them, 14 were �xedand only 6 points per blade side were allowedto vary. So, the total number of degrees offreedom was 12.The Mah number distribution over theblade surfaes is shown in �g.8. This wasthe preset target (though the target was ex-pressed in terms of pressure oeÆient ratherthan Mah number) but it is also too lose tothe orresponding distribution over the om-puted optimal blade.The starting surrogate model is built uponthe responses and gradients for 100 randomtraining patterns. The optimization proessonverged within six yles to a blade geom-etry that reprodues the target pressure distri-bution. The onvergene history is shown in�g. 9. The CPU ost for this test ase was100+ 6 diret evaluations of the ow �eld andthe same number of adjoint evaluations, orre-sponding to 212 Euler alls.CONCLUSIONSA new variant of EA{based optimization,using a new RBF network, was proposed.

Figure 8: 3D Peripheral Casade: Mah num-ber distribution over the blade surfaes and thehub.
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Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004The method seems promising for use inoptimization problems with expensive �tnessevaluations. The onept of the new methodis to allow a diret and an adjoint ow solverto ompute objetive funtion values andgradients at a number of andidate solutionswhih will then be used to build a dependablesurrogate evaluation model for the evolution-ary searh. Compared to onventional RBFnetworks, the new network has a number ofadditional tuning parameters. The new modelyields systematially better preditions thanthose of the onventional model. It, thus,ensures that the optimization algorithm mayonverge to the global optimal solution withina limited number of yles, eah of whihinvolves the RBF network retraining.For the design of optimal aerodynamishapes, the adjoint formulation is used to om-pute objetive funtion derivatives. To ex-tend this method in appliation areas otherthan those supported by CFD tools, a simi-lar method that is apable of omputing gra-dients, with reasonable omputing ost, shouldbe devised.The training set is updated at the end ofeah yle, prior to building the new RBFmodel. Eah time, the training patterns arerede�ned through (a) adding new patterns(the most reent \optimal" solution should beamong them; but, other points seleted in lessexplored areas should be added) so as to pro-tet the network from over�tting and the wholealgorithm from being trapped into loal sta-tionary points, (b) eliminating some patterns,by employing distane{based riteria. The re-de�nition of the training set is ruial and re-searh in this area is ongoing.ACKNOWLEDGMENTThe seond author was supported by grantfrom the Program Thales of the National Teh-nial University of AthensReferenes[1℄ K.C. Giannakoglou. A design method forturbine blades using geneti algorithms onparallel omputers. ECCOMAS 98, JohnWiley & Sons, 1998.[2℄ K.C. Giannakoglou. Designing turboma-
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